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1. Introduction

This semi-annual progress report contains a summary of work accomplished on .0. N. R.

contract number N00014-86-K-0370, High Resolution Radar Imaging, during the period from I

June 1988 to 30 November 1988.

>The goal of this project is to formulate and investigate new approaches for forming images

of radar targets from spotlight-mode, delay-doppler measurements. These measurements could be

acquired with a high-resolution radar-imaging system operating with an optical- or radio-frequency

carrier. Two approaches are under study. The first is motivated by an image-reconstruction

algorithm used in radionuclide imaging called the confidence-weighted algorithm; here, we will

refer to this approach as the chirp-rate modulation approach. The second approach is based on

more fundamental principles which starts with a mathematical model that accurately describes the

physics of an imaging radar-system and then uses statistical-estimation theory with this model to

derive processing algorithms; we will refer to this as the estimation-theory approach.

Work accomplished during the reporting period is summarized in the following section.

2. Summary of Work Accomplished

Pfogress during this reporting period has been made on: a, extending the estimation-theory/

approach to include a constraint on input signal-to-noise ratio; b, extending the estimation-theory

Japproach to include a sieve constraint for stabilizing image estimates; c, extending the

estimation-theory approach to include a specular or glint component in the radar-echo data; d,

janalyzing the performance of the estimation-theory approach through computer simulations; and

e, modifying the chirp-rate modulation approach through the introduction of the Wigner-Ville

jdistribution. Some of these areas are described briefly below and more completely in the appendices.

A patent was awarded associated with the chip-rate modulation approach.

2.1. Estimation-Theory Approach to Imaging

I During this reporting period, a major effort has been expended in implementing and con-

ducting computer simulations to evaluate the performance of this imaging approach compared to

I the conventional appraoch based on Fourier transforms. Preliminary results are reported in reference

i -1-
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(1], a preprint of which is included in Appendix 1. We have extended the estimation-theory

approach to include constraints on the input signal-to-noise ratio and for including sieve constraints

to stabilize estimated target images. We have found that such constraints can improve the per-

formance significantly, as described briefly in [1] for the SNR constraint. A simulation program

is presently being prepared to run equations of the estimation-theory approach on an Active Memory

Technology Distributed Array Processor having 1024 processors connected in a mesh array; we

expect that this will permit us to perform simulations with modest sized images for performance

evaluation studies. Effort continued to extend our model to include specular components in the

return signal; a brief status report is contained in Appendix 2.

2.2. Chirp-Rate Modulation Approach to Imaging

A patent was issued jointly to H. J. Whitehouse, of the Naval Ocean Systems Center in San

Diego, and D. L. Snyder for the chirp-rate modulation approach to imaging based on the use of

the confidence-weighted algorithm (2]. A copy of this is in Appendix 3.

The focus of our research on the chirp-rate modulation approach during the reporting period

has been on modifying the image formation equations following the introduction of the use of the

Wigner-Ville distribution into the problem by H. Whitehouse [3].

3. References

1. P. Moulin, D. L. Snyder, and J. A. O'Sullivan, "Maximum-Likelihood Spectrum Estimation
of Periodic Processes from Noisy Data," submitted for presentation at the 1989 Conference on
Information Sciences and Systems, Johns Hopkins University, March 1989. A preprint is in
App,;ndix 1.
2. H. J. Whitehouse and D. L. Snyder, Imaging System, U.S. Patent Number 4,768,156, Aug.
30, 1988. A preprint is in Appendix 2.
3. H. J. Whitehouse, "Delay-Doppler Radar/Sonar Imaging," presented at the Summer Program
on Signal Processing, Institute of Mathematics and Its Applications, Univ. of Minnesota, Minneapolis,
Aug. 1988.
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Maximum-Likellhood Spectrum Estimation of Periodic
Processes from Noisy Data*

P. Mtu/in
D. L. Snyder

J. A O'Sulivan

Electronic Systems and Signals Research Laboratory
Department of Electrical Engineering

Washington University
Saint Louis, MO 63130

ABSTRACT

We have developed a new approach to maximum-likelihood spectrum estima-
tion of wide-sense stationary proesses from noisy data. A statistical model for the
data is defined: The process whose spectrum is sought is wide-sense stationary,
periodic and Gaussian, and its observations are corrupted by an additive white noise.
A maximum-likelihood formulation of this problem has been derived, and the equa-
tions are solved numerically via the expectation-maximization algorithm. This
approach presents several attractive features, an important one being that the noise
corrupting the observations is now taken into account.

We present some recent developments for this problem. The statistical perfor-
mance of the new maximum-likelihood spectrum estimator is studied both theoreti-
cally and numerically. Comparison with traditional estimators such as the periodo-
gram highlight several strong points of the method. We also identify certain limita-
tions, namely the instability of estimates for high noise levels. These limitations can
be alleviated if a priori information about the signal is available. Two such problems
are discussed in which the information at hand has the form of a constraint on the
input signal-to-noise ratio.

We show how such information can be incorporated in the maximum-likelihood
estimation procedure. First we assume the signal power to be known. Theoretical
issues of existence and uniqueness of the solution are discussed. We proceed with a
problem in which the information is less complete, when only an upper-bound on the
signal power is available. The statistical performance of both constrained estimators
is quantitatively studied.

January 17, 1989

This work was supported by contract number N00014-8-K-0370 from the Office of Naval Research.
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Maximum-Likelihood Spectrum Estimation of Periodic
Processes from Noisy Data *

P. Mnlin
D. L. Snhder

J. A O'Sulian
Electronic Systems and Signals Research Laboratory

Department of Electrical Engineering
Washington University
Saint Louis, MO 631V 0

1. Introduction
A promising approach to maximum-likelihood estimation of Toeplitz constrained covariance

matrices has been proposed recently [I]. Several further developments can be considered. First, this
method also applies to the dual problem of spectrum estimation. Another issue of interest is that the
statistical model can account for the presence of additive noise corrupting the observations and for
linear transformations of the process whose covariance or spectrum is sought. These considerations
have motivated a new approach to high-resolution delay-doppler radar imaging, where a major goal is
to produce estimates of the target's scattering function [2). In the special case of a point target and a
constant envelope transmitted signal, this reduces to a spectrum estimation problem.

This paper describes some recent developments for this problem. We study the statistical per-
formance of the new maximum-likelihood spectrum estimator both theoretically and numerically.
Comparison with traditional estimators such as the periodogram highlight several strong points of the
method. We also identify certain limitations, namely the instability of estimates for high noise levels.
These limitations can be alleviated if a priori information about the signal is available. Two such
problems are discussed here in which the information at hand has the form of a constraint on the
input signal-to-noise ratio.

This paper is organized as follows. Our model is presented in Section 2. A maximum-like!ihood
formulation of the problem is given in Section 3, and the equations are solved via the expectation-
maximization algorithm. Section 4 is devoted to a statistical performance analysis of this estimator
and a comparison with two other methods. In Section 5 we show how a priori information on the sig-
nal can be incorporated in the maximum-likelihood estimation procedure. First we assume the signal
power to be known. Theoretical issues of existence and uniqueness of the solution are discussed. Sec-
tion 5 deals with a less complete knowledge, where only an upper-bound on the signal power is avail-Iable. The last section is devoted to a quantitative study of the statistical performance of both con-
strained estimators.

2. Model

The following is derived from the model presented in [11 for a point target and a constant
envelope transmitted signal. The observation i6 an N-vector sample of a wide-sense stationary,
periodic, Gaussian process corrupted by an additive noise :

r-6 +W (2.1)

where b contains N consecutive samples of a zero-mean periodic process b. with length P > N, and w
is an zero-mean white Gaussian noise with variance No, uncorrelated with b.

This work was supported by contract number N00014-86-K-0370 from the Office of Naval Research.
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i
The periodicity assumption is required to guarantee that the likelihood function is bounded above;
therefore, there exists a maximum-likelihood estimator [11.

Now we define the spectral process associated with 6 to be the DFT of one period of b,.
Assume that we are interested in estimating only M of the components of this spectral P-vector (1 <
M < P), the other components being zero with probability I ; let c be this M-vector. This assumption
is introduced to deal with the bandlimited spectra encountered in radar applications, which arise
because radar targets have finite extent [2]. c is a Gaussian random M-vector with diagonal covari-
ance E, whose entries o2(i), i - 0,..,-1, are real and positive. c and b are related by a linear
transformation:

b - r¢, (2.2)

where we have defined the ANN matrix r, consisting of the first N rows and the outer M columns of
the PXP DFT matrix. The superscript f denotes the Hermitian-transpose operator on matrices.
Our model for the observations can now be written as

r - rtc + w. (2.3)

The covariance matrix for r is given by

ir - Elrr t] - rtrr + NoiN, (2.4)

where IN is the NXNidentity matrix.

3. Spectrum Estimators

In this section we introduce a maximum-likelihood spectrum estimator for the model (2.3),
denoted by ML. We also define two estimators which will be analyzed and compared to ours in the
next section. The first one is the maximum-likelihood estimator derived assuming noise-free data,
denoted by ML0 ; the second one is the periodogram.

3.1. NM1 Estimator
From (2.4), the likelihood function for E is

L(r,E) - -% in det (FtEr + NoIN) - % rt(rtr + NoIN)'r. (3.1)

Maximizing the likelihood with respect to E yields the necessary trace condition which the estimate
must satisfy [1,2]:

T, [r(rtir + Noli)-(rrt-rti" - NoNXrtir + NoI)-i tl - o, (3.2)

for all MkxMdiagonal matrices 64. This trace condition is a nonlinear equation in E. Generally it can-
not be solved directly in closed-form, so some numerical search procedure must be implemented. An
elegant solution is the expectation-maximization (EM) algorithm used in (1,21. An initial estimate E(0)

is selected. At step k+1 (k - 0,1,..) the estimate is updated according to

j~+1 = rg mx Q(rdik) (3.3)
where

Q(EI (h) - M-1 i 2 (i) - M-4 E lIc(i) 1 21 rE(k) 
(3.4)

[I and
Ejl I c(i)12 1 rE(h)l. [j(k) _ j(k r(rtji,)r+NoI,)-i rt:( +

x r(rt)F''r+NoiN)-rtk) (,i) . (3.5)

This algorithm produces a sequence of estimates
.2 (i)(+I) El Ic(yJ 2 Ij() (3.6)

iI-6-
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having increasing likelihood. It can be shown that the stable points of this algorithm satisfy the neces-
sary trace condition for a maximizer [2]. The issue of uniqueness is addressed in [3].

Special eaw :N-M-P-1

A closed-form expression for E can be derived in this special case:
b3(i) - max(O,r' - NO). (3.7)

3.2. MLO Estimator
Additive noise corrupting observations is usually not included separately in approaches to spec-

trum estimation. This model was assumed in [i]. The sequence of estimates of E is still given by (3.6)
and (3.5), in which we now let No = 0. We call this the MLO estimation. Clearly ML and ML1 are
equivalent for noise-free problems.
Special case : N- M

The problem for which the number of observations (N) is equal to the number of parameters to
be estimated (M) is of some practical interest. It also turns out that the trace condition can be solved
in closed-form in this instance. The matrix r is then invertible, indicating the existence of a one-to-
one mapping between r and c. The NLO estimator is simply

2(i) - [{'rXiP , (3.8)

where r-t denotes (l-)t.

3.3. Periodogram

The periodogram estimate of the spectrum is defined as the (scaled) magnitude-squared Fourier
transform of the N observations padded with P-N zeroes [4]. The first M spectrum samples are then
given by

, (i) = (P/J (rrX) 2  (3.9)

Special cae : N- M- P
When N - M - P, the matrix r is equal to the PXP DFT matrix and the periodogram and

MLO estimates are the same. In this case, a full period of the process is estimated.

4. Performance Analysis

In this section, we estimate E for the model (2.3) and study the statistical performance of the
three estimators above. For each method the bias and variance are evaluated, where

&ze[E -EIE] - E (4.1)

andVar(EI - EJE I - (EtEI)2. (4.2)

As we shall see in Section 4.3, the performance strongly depends upon the input signal to noise ratio
defined by

SNR , - E0 / No, (4.3)

where E0 is the average power of the process, defined by
E 0 =- (11P) Tr [E]. (4.4)

From (4.1) and (4.2), we derive the mean-squared error (MSE) matrix, defined by

ACE [E] - EI(E-E 2 ] - Var[E] + (BiasE(I)2. (4.5)

The output signal to noise ratio matrix is defined as follows :

Si.,.fl -EIE) (ABE [ij)-% (4.6)

-7-



In the following section, we evaluate the bias and mean-squared error for the estimators derived
in Section 3. Whenever closed-form expressions for the ML estimates cannot be derived, computer
simulations are performed. Typically 3000 realizations are generated for each process. For a given esti-
mator, (4.1) and (4.6) are then estimated from the 3000 estimates.

4.1. Performance Analysis
Closed form expressions for the bias and mean-squared error are derived for MLO and the

periodogram when possible. Simulations were carried out to compare the performance of the estima-
tors for various levels of input SNR. The performance was then compared to the Cramer-Rao lower
bound for the variance of unbiased estimators. Much effort was made for the special case M f N.
This provides insight into the problem since the MLO equations can be solved in closed form. The
choice of P is free, so long as P > N [2].

4.2. Closed-form Expressions for Estimator Performance

(a) MLI
As indicated in Section 3.1, no closed-form expression for the estimator is available, so the

evaluation of bias and variance is obtained by computer simulation.

(b) MLO

Closed-form expressions for MLO can be derived when M = N. The results are presented below.

Bias

Combining (2.3) and (3.8), we can write

,(i) = I(c + r-tw)(ij 2  (4.7)

Taking the expectation of (4.7), we get

Eta2(i)] - oy(i) + No(rrt)-I(ii) , (4.8)

which implies

Bia8[a2(i) f N0(rrt)-'(i,i) . (4.9)
The bias is due to the noise corrupting the observations and is proportional to its variance. The sensi-
tivity of the bias to the noise is determined by the diagonal entries of the matrix (frt)-l.

tyk an-Squared Error

Taking the expectation of (4.7) squared, we obtain

EI(S,(i))2] - 0'(i) (2+68o) + No a(i) ( 4(rrt)- (1 ,i) + 2 E Re[rlt(i, j)2]

i-0

After some algebraic manipulations, this expression can be lower-bounded by
E[(d 2(i))f] _ 2 [o2(i) + No(rrt)-'(i,i)]2 - 2 ( El'(i)] )2 (4.10b)

From (4.8) and (4.10), (4.5) becomes

ACE [,2(i)I = ( E[(,(i))l )2 + (No (rrt)-y(i,i) )2 , (4.11a)

and A'E J&2(i)1 _ q4(i) + 2 o2(i) No (rT)-(i,i) + 2 (N. (rr)-(i,i))2 • (4.11b)

-8-



(c) Priodowrazn

Bia8
Combining (2.3) and (3.9), we write the periodogram estimates in the equivalent form

a(i) - (P/N) I (rrtc + rw)(i) 2
. (4.12)

Taking the expectation of (4.12), we get

Et 2 (i) - (P/N) (rrturrt + Norrtxi,i), (4.13)

and

Bi,[&2(i)] - ((P/N) (rrt~rrt) - E )(i,i) + (P/N) N. (rrt)(i,i). (4.14)
The bias contains two terms. The second is due to the noise and is proportional to N0 . The sensitivity
of the bias to the noise is deterrmined by the diagonal entries of the matrix rrt. The other term is
independent of N0 . Even for noise-free observations, the periodogram is a biased estimator of E unless
rIt is the identity matrix. This would be the case only for N - M - P (observation of a full period of
the process) or N/M --* cc (infinite data).

A'an-Squared Error

Taking the expectation of (4.12) squared, we obtain
M-& U-1

( (P2 /N) [ 2 [ Eo'(.) I (rrt)(i,122 + 4 No E a2(,) (rrt)(i,1 2 (rr t)(i,i)
j-0 J-0

+ 2m,~ (rrt)(,i)2
M-

+ I a2(0) (rrt)(i, 0)2 + a2(M/2) (rrt)(i,M/2)2 + No E r(i,. 2 12 (4.15a)
i-0

This expression is lower-bounded by

2 (P/ 2 [ (rrtrrt + Norrtxi,i) ]2 - 2 ( E[a2(i)[ )2 (4.15b)

From (4.13) and (4.15), (4.5) becomes

SE [ 2(i)J =f ( E[2 (i)) )r + [(P/N) (rrtrrt - (N/P) E + Norrt)(i,i) 2 (4.16a)

and
2&vE [t (i) (PP/N 2) ( [(rrturrt)(i,ir) + (rrturrt _ (N/P) E)(ii)2

+ 2 No (rrt)(,i) (2 rrtErrt - (N/P) .)(i,i)

+ 2 [ N0 (rrt)(i,) ) . (4.16b)

4.3. Simulation results
Process 1

The first process we consider is real and has period P = 10. Its spectrum is symmetric and lowpass (M
= 5). All nonzero spectrum samples are identical :

0 2(i) = I, i= O,..,4.

The number of observations is N - M = 5.
The noise variance No ranges from 0 to 1. Figures 1 and 2 show the bias and SNR, for the estima-
tors of oJ(2) as a function of SNI? , according to the definitions (4.1), (4.3), and (4.6). In the absence
of additive noise ( SNVR. -. oo), MLI and MLO are the same. Both are unbiased estimators. The
periodogram, however, is biased, and its MSE is also larger than the MSE for the ML estimators.
When No increases from 0, the performance of the estimators is roughly constant so long as SNR
remains above some threshold. For larger No, all three estimators exhibit a strong degradation in

-9
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performance. Comparing the threshold. for MLO and NMI, we see the tremendous improvements
brought by taking the noise into account in the model. Typically, for a same SNR,, MLI will have
the same performance as MLO operating in a 20 dB noisier environment.

We also notice that the threshold for the periodogram is located at a lower SNR- than for the
ML estimators. In Sections 4.2(b) and 4.2(c), we indicated how the sensitivity of the performance to
noise can be determined for MLO and the periodogram when N - M. It turns out that for the flat-
spectrum process considered here, the periodogram has a lower sensitivity than MLO and MLI. This is
thought to be due to the smooth spectrum used in the simulation.

Process

It has been conjectured that the periodogram does not perform well for nonuniform spectra [5].
This motivated our study of a sharply peaked spectrum. The process has period P = 10, and a single
nonzero spectrum component

2(0) - 1.

There is just N - M - I observation.

Bias and SN?,, for the estimators of o2(0) are plotted as a function of SM?.i. in Figures 3 and
4. In the absence of additive noise, the periodogram is very strongly biased, and its MSE is large.
Furthermore, in high-noise environment the periodogram is no longer more robust than the ML esti-
mators. Clearly, the periodogram is outperformed by MLO and ML1. It should also be noticed that for
this process, the improvement of MLI over MLO is quite reduced.

Computational Considerations

The convergence rate of the EM algorithm depends on several parameters. The computation
time for each iteration is of order MNV. The number of iterations required for convergence of the
algorithm grows as M and N increase. For ML1, more iterations are required as No increases, espe-
cially in the threshold region and beyond. Typical figures are: for process 1 with No - 0.1, 30 itera-
tions are required before the spectrum estimates are stable; when No - 1, 300 iterations must be per-
formed. Our algorithm is implemented on a Masacomp model 5500. Running the program on 3000
realizations in the latter case is typically completed in 6 CPU hours. We are presently implementing
these algorithms on a mesh-connected 1024 processor (DAP by Active Memory Technology), and we
expect a major reduction in the time required to produce estimates.

4.4. Cramer-Rao Bounds

In this section, we study how the MSE of the estimators considered so far relates to the
Cramer-Rao bound on the variance. The Cramer-Rao bound on the variance of any unbiased (UB)
estimator of O2(i) for our model has been found to be [31

UB-CR[&2(i)I - (a 2(i) + No(rrt)-4(i,i))2 . (4.17)

From (4.5) and (4.17), the MSE for an unbiased estimator whose variance attains the Cramer-RaoJ bound is given by

AE^o2 (i)I = (o2(i) + No(rrt)-I(i,i))2 
. (4.18)

Next we state the Cramer-Rao bound on the variance of a biased (B) estimator of 2(i)

A BER- (,), i a jt)2 .(.

B-CR[ (i)] - UB-CR[ 2(i)] (419)I 8O0( i)
From (4.5), (4.17) and (4.19), the MSE for a biased estimator reaching the Cramer-Rao bound is given

b)2E
2(i)l )ABE a (i)I - (o2(i) + No(rrt)-(i,i)) ( i) + ( aise[ 

2 (i)) . (4.20)
From the analytical expressions given for E& 2(i)] in Section 4.2, we can now calculate the gradient of

EJ,2 (i)] for MLO and the periodogram. Then, the minimum MSE for a biased estimator having the

-10-



same bias as MLO and the periodopram is derived, and a comparison with the actual MSE is made. No
closed-form expression has been found for MLI.

&L0

From (4.7),

8E1&(i)1 t.(4.21)
802 (i)

From (4.9), (4.20) and (4.21), the MSE is lower-bounded by

BE,[a2 (i)] - a4(i) + 2 v2(i) No (rr)--(ii) + 2 [ No (rrt)-4(i,i) 12 . (4.22)

Periodogram

From (4.13),

wEao'wi - (P/NJ (rr'rrxii). (4.23)
Co2 (i)

Combining (4.14), (4.20) and (4.23), the MSE is lower-bounded by

KAE6 [a(i)] - (P/1 ) ( [(rrtErrtXi,i)f + (rrtErrt - (N/P) E)(ii)

+2 No (rrtXi,i) (2 rrtErrt - (N/P) E)(i,i)

+ 2 [ N. (rrtxii)]2). (4.24)

Comparison of vkE's with Cramer-Rao bounds

The Cramer-Rao bounds (4.22) and (4.24) on the MSE are the same as the bounds (4.11b) and
(4.18b) derived algebraically from the exact expressions (4.11a) and (4.16a). Figure 5 shows how the
lower bounds compare with the exact expressions for Process 1. The actual MSE's are 3-4 dB above
their respective bounds.

4.5. Discumion

The results derived above suggest additional comments on a comqarison between periodogram
and ML estimators. Typically each component of the gradient of E (i) given in (4.23) is much
smaller than unity (for the processes we consider), and the Cramer-Rao bound on the variance of the
periodogram-like biased estimator is much smaller than the Cramer-Rao bound on the variance of
unbiased estimators. When the variance dominates the MSE, the periodogram offers a good MSE per-
formance. This was the case for Process 1. For a less uniform spectrum such as the one chosen forjProcess 2, the bias dominates the MSE and the periodogram is outperformed by the ME estimators.

5. Constrained maximum-likellhood estimation

5.1. Description of the problem

An examination of Figures 1-4 suggests that MLI suffers in certain situations. When SNVR is
low, the estimates are biased and their variance is large. Although the maximum-likelihood estimator
is asymptotically unbiased and efficient, these properties are not guaranteed in the small-sample prob-
lems considered in Section 4. This limitation can be alleviated if a priori knowledge, such as SNP,, is
available. Since No is known, such a constraint on the signal-to-noise ratio can be translated into a
constraint on the signal power that must be satisfied by the maximum-likelihood estimates. Now we
show how this constraint can be incorporated into the EM algorithm. The constrained estimates exist

and are unique.
In Section 5.2, SM.. is known. In Section 5.3, our knowledge is more incomplete, and only an

upper bound on SNW is available.

I



5.2. Known SNVRj
The equations for MLI presented in Section 3.1 can be m oded as follows to satisfy the con-

straint. At each step of the EM algorithm, we maximize Q(EI E ) defined in (3.4), subject to the
power constraint

M-i
2 (i) - PEo = S, (5.1)

where Eo is the signal power. The solution also maximizes

Q(E I E(b)) + M ( o2 (i) - S), (5.2)
i-O

where X is a Lagrange multiplier. Taldng the gradient of (5.2) with respect to E, we obtain a quadratic
equation for each spectral component

2 X oA(i) - o2(i) + C, =0 , (5.3)

where

C, - E Ic(ip2 I,, ('1

is calculated according to (3.5). The solution to (5.3) is
1+I,

02(i) + 4v -x .. - -
4X#

= X, = x i, (5.4)

where 1, is either +1 or -1. The equation for X is
M-44sx - M=- E 4-1-i .i (5,5)

In general this nonlinear equation in X cannot be solved in closed-form. Furthermore, an ambiguity
subsists about the choice of the signs 1i. The latter problem is solved by application of the following
theorem:

Theorem

Assume that C 0 > C,, i = 1,..,M-1. Then

(1)

Io - +1 :S < 2C"0 [M - E/ %r/I-i1Co) I

i-4

= :ele

(2) X is the largest nonzero solution of

(4S\_-M+ M . )2 1 SC,,X, for S# Eci, (5.6a)

and

x-o, for S= E ¢ (5.6b)

Iis upper-bounded by 1/SCO, and (5.6a) can be solved numerically for X. Note that the particular

case (5.6b) is also the solution to the unconstrained maximization problem. Next, a2(i)(kli is calcu-

lated from (5.4). The whole procedure is repeated at each maximization step of the EM algorithm.

Note that because of the highly nonlinear nature of the problem, no analytic expression is available for

the constrained estimator, even in the special case mentioned in (3.7).
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5.3. Known upper bound on SRi,
In this section, the a prioi knowledge about SNR. has the form of an upper bound. Our

approach parallels that of the previous section, with the upper bound now expressed as an inequal't
constraint on the estimated signal power. At each step of the EM algorithm, we maximize Q(E E
defined in (3.4), subject to the inequality constraint

M-I

E0 2(i) PEo - S, (5.7)
i-.o

where E0 is the upper bound on the signal power. If the unconstrained solution satisfies the upper
bound, the constraint is inactive and the estimate is given by (3.6). Otherwise, the constraint is
active, and as in Section 5.2, the solution is the maximizer of the expression (5.2).

We can expect the performance of this estimator to be strongly conditioned by the choice of E0 .
In the limiting case E0 --* oo, the constraint is always inactive and the estimator is equivalent to the
unconstrained estimator. For the other extreme case Ea -- 0, the constraint is always active.

8. Simulation results
In this section, we apply the SNR-constrained estimators derived above to Process 1, and we

evaluate numerically both their bias and mean-squared error.
Figures 6 and 7 give a plot of the bias and SNRw for different estimators of a2(2) as a function

of SN., according to the definitions (4.1), (4.3), and (4.6). The estimators represented on these
figures are: the two constrained estimators of Section 5, respectively denoted by EQ-MLE and INEQ-
MLE, and defined for the (true) power constraint S - 5; the unconstrained estimator MLI of Section
3.1; and the periodogram PER of Section 3.3.
In the absence of additive noise ( SN&, -* oo), MLI and EQ-MLE are unbiased. The periodogram
and INEQ-MLE, however, are biased. For the latter, this can be understood as follows. The sum of
the M estimates is smaller or equal to S - 5, and therefore the sum of all biases is negative. When No
increases from 0, the performance of the estimators is roughly constant so long as SPR.N remains
above some threshold. For larger No, all estimators exhibit a degradation in performance. Note that
for the SNR-constrained estimators, each bias is upper-bounded by S - o2(i), and lower-bounded by
- a2(i). Comparing the SNR,, performance in Figure 2, we see the favorable effects of incorporating

SNR constraints into the problem. For low No, SNRw is improved. This is due to the estimates hav-
ing a lower variance, which is the dominant term in SNR... For very noisy data, the performance of
the estimators is clearly improved. We can easily derive a lower bound for SNR,.'[i(i)I:

2(i) <

max [S - 2 (i), 2 (i)] -

This bound is independent of No.

Conclusions
In this paper, we have described an approach to spectrum estimation from noisy data, based

upon a statistical model for the observations. First we derive a maximum-likelihood estimator, and
evaluate its statistical performance. A comparison is made with two other methods that do not take
the additive noise into account. One is the traditional periodogram and the other is the maximum-
likelihood estimator derived for a noise-free model. It is shown that in terms of bias and MSE, the
new estimator can offer a better performance than the latter ones. The improvement over the periodo-
gram is noticeable for rough spectra: The MSE was 15 dB lower for the process we considered.

In general however, the maximum-likelihood estimates are still unstable at high noise levels. In
the second step of our study, we refine our technique to improve the performance when some side
information exists. We have studied one such problem in which some information about the signal-
to-noise ratio is available. The performance for the SNR-constrained estimators has been numerically
evaluated, and compared with that of the unconstrained estimator and of the periodogram. The new
estimators perform significantly better than their competitors for low SNIR.. Because of the SNR

- 13-
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constraint, the estimates are not allowed to take on the large values that were produced in the uncon-
strained estimation problem. This results in the estimates having a lower variance. One additional
feature of our approach, and an attractive one, is its versatility. Only a slight modification of the
(unconstrained) algorithm is required.
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K. E. Krause
January 8, 1989

STATUS REPORT:

MAXIMUM LIKELIHOOD APPROACH TO
SPECULAR TARGET IMAGING

The following summarizes activity between June of 1988 and January of 1989
in the statistical model formulation and imaging approach for the Maximum
Likelihood Estimation based imaging of delay and doppler spread specular
targets.

At the time of the last report, two concepts were identified for further analysis
and possible selection as the theoretical model to use in the specular target
imaging problem. They were: (1) Maximization of a likelihood function which
is assumed to factor into a product of identically structured likelihood functions,
one for each scatterer in the delay-doppler plane and (2) Application of the EM
algorithm to the likelihood function in quest of a complete/incomplete data
space formulation which would cause the factorization as described in (1) above
to occur.

The consequence of the factorizations mentioned is to reduce a multi-
dimensional problem to the complexity of a one-dimensional problem that will
be solved many times, once for each point in the target space grid. The idea in
investigating the EM algorithm was to provide a rigorous justification for this
likelihood factorization.

Recalling that each scatterer in the model under investigation is assumed to be
characterized by a deterministic amplitude(to be estimated at each point in the
target space to form the image) and a random phase(varying from known
exactly to uniform - and to be integrated out in the estimation procedure), the
EM algorithm was considered for a complete data space which consisted of a
scatterer return plus white noise constituting the signal for each scatterer. By
this construction, the signals for each scatterer were independent, hence the
likelihood factorable in a theoretically rigorous manner from the start. The
remaining issue was to work out the equations to see what, if any,
computational complications might occur with this formulation. Limiting forms
of the random phase were considered in some detail. Specifically, p h as e
known exactly was first assumed and the equations for the Expectation and

- 18-
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Maximization steps worked out. The result was a one step iteration with
equation form comparable to the solution that results in the non-EM approach.
Added in the Scheme of computational complexity was the need to do a linear
smoothing in the E step, which was easily done in this case. Phase uniform
was considered next. The expectation to be evaluated took a very complex
form, so it was decided to look at limiting cases to see how the formulation and
computational complexity would proceed. In considering a high signal to noise
ratio condition, the estimate could be theoretically calculated but would require
doing a nonlinear smoothing to determine a constant required in the solution.
The EM algorithm in this application then seems to provide the basis for a
rigorously correct likelihood factorization resulting in a one step solution, but
with increased calculational complexity.

In light of this complexity, and with the realization that any simulations and/or
data that the model would be tested against would likely use stepped frequency
waveforms(the complex envelope of which would make factorizations appear
reasonable for the integration times that would be used), it was decided to
proceed with a simulation to test the first, non-EM model formulation.
Evaluation of results will determine the necessity to proceed with the EM
approach. Currently, the first model concept is being coded for imaging of
simulated data from simple generic targets. Its performance in comparison
with standard imaging techniques will then be studied.
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2
departure from idealized line-integras and the fact that

IMAGLNG SYSTEM noise can be non-negligible in some radar-imaging situa.
bons. A solution was not evident, however. Thes art-

STATEMENT OF GOVERNMENT INTEREST ties are included in the Appendix for a reader's conve-
The invention described hereon may be manufactured 3 11imCe-

and umed by or for the Government of the United States Thus. them is a continuing ned in the state-of-the-art
of America for governmental purposes without the for a method and means which may permit the removal
payment of any royalties thereon or therefor. of the restriction of noise-free line-integrals so that gen-

eral magnitude squared ambiguity functions can be
BACKGROUND OF THE INVENTION 10 accommodated and the recognition of the effects of

This invention relates to a method and means for noise can be developed for improved imaging. In this
iroving an immi system. In greater particularity it discussion the ambiguity function is defined as the mag-

is for a method and meas for incorporatng the opera- nitude squared of the time-frequency autocorrelation or
tons o resolution enhancement and apriori information crom correlation function.
utilization simultaneously in the design of an improved 15
imaging system. In still greater particularity it is to SUMMARY OF THE INVENTION
provide for an improved method and means for improv- The present invention is directed to providing a
1ng am imaging system that is adapted to imaging in a mea and method for improving the target imaging
synthetic aperture radar, or in an inverse synthetic ape r " provided by a series of discrete data parameterized by a
ture radar, a radiometer, a sonar, an electromagnetic or 20 variable such a an angle G in an imaging system which
acoustic tomOgraphic system or a rled system in receives data representative of a physical phenomena
which there is an interaction between the esuremnts and the pheonomena being observed and the interaction
that am being taken of physical phiomenon and the of data therebeween. Providing a plurality of discrete
phenomeno which a y be o obeerved. data inputs each for one of the series of discrete data

Recently an analogy has become rec ized which 25 enables a convolving-processing in parallel to generate
exs between delay-doppler imaging-radar systems two-dimensional preimage functions:
and tomographic systems used in clinical radiology.
The analogy appears to hold the possibility of improv-
ing radar imaging because the me of matched fidtermg
for nom suppression is suggested even by initial con- 30 where fe(-,f) as a function of Or',f is the set of avail-
person, and. more importandy because a line of think- able data and we are chosen by the system designer.
ing is emerging by which new mathematical models for Summing the two-dimensional preimage functions ena.
the radar-imaging problem might be formulated and bles a convolving the summed functions with a circu-
solved for improving procesing. These new models
account for dominant effects including noise. M. Bern- lly symmetric function h where his obtained from the
feld, in his article entided "Chirp Doppler Radar" PAo- equation:

cedbg IE - VoL 72. No. 4 pp 540-541, April 1984, tr}- f/ - '/f '/Wdf
made a restricted form of this observation and the re-
stricted form also appears in a different form in the where d is the desired response to a known distribution
work of D. Mensa, S. Halevy, and G. Wade in their 40
article entitled "Coherent Doppler Tomography for n. In particular if p(o,') is a two-dimensional delta
Microwave Imaging" APredinr IXE VoL 71, No. 2 fuion, then his the point spread funcionoftheimag-pp 25-261, February 1933. Both of these atiles dr'aw ing system .
ppea4-2a1ogyebuat r y ote wfhee tedraw A prime object of this invention is to improve thethe analogy to a tomography system wherein the data dego£aiminsyt.

available for processing are in the form of idealized. 45 design of an imaging system.

nose-free line-integrals through the object being i Another object is to provide for an improved method

aged. This type of tomography system embraces a situa- and means for improving an imaging system relying on
ti, that is well approximated with X-ray tomography an interaction between the measurements taken of a
systems because X-ray sources can be highly collimated physical phenomena and the phenomena which is being
so as to form narrow X-ray bem of high intensity that so observed.
are passed through the object being imaged. Although Still another object of the invention is to provide for
the aalogy was articulated in these two articles, there an improved imaging system relying upon new process-
is strong reason to believe that its applicability to prcti- ing algorithms implemented by associated circuitry that
cal radar/somar signals of inter.em is limited because the provide improved visualization of targets.
ambiguity fuactio normally associated with such t- is Another object is to provide for an improved method
dar/sonar signals do not approximate line distributions and means for imaging targets having specialized pro-
in m and thus do no permit the evaluation of line cesing for real time implementations.
integrals of the scattering function. Two additional Yet still another object of the invention is to provide
writings dealing with frequency-tepped, chirp-signals for an improved imaging system such as in a synthetic
have discussions which clarify this limitation. M. Prick- 60 aperture radar, an inverse synthetic aperture radar, a
ets, and C. Chen in "Principles of Inverse Synthetic sonar, an electrometric or acoustic tomographic system
Aperture Radar (ISAR) Imaging." IEEE EASCON or related system having a target image provided by a
Rrd pp. 340-345. September 1910 and M. Prickett series of data parameterized by a variable such as angle
and D. Wehner in "Stepped Frequency Target Imag- 9.
ing", AppIikttai. of Image Understading and Spatial 65 These and other objects of the invention will become
Procesing to Radar Signals foAutomatic Ship Cla lflc- more readily apparent from the ensuing specification
don Workshop. New Orleans, La., February 1979 dis- and drawing when taken in conjunction with the ap-
cuss side lobe structures and other features that cause a pended claims.
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BRIEF DESCRIPTION OF THE DRAWINGS eter. they give an indication of the approximate range.

This apnon information can be incorporated in pre-
FIG. 1 is a ichematc representation of a preerred cisely the same way that it is incorporated in the pos-

form of the invention. tins emission tomography that is referenced hemn and
FIG. 2, s illustrative for a 2D Gaussian approximation S discused n greater detail below. That is to say, chat

of the 2D ellipsoidal contour of the ambiguity function instead of doing a back projection which is a transfor-
of the linear FM waveform. mation of a one-dimensional data field into a two-di-

DESCRIPTION OF THE PREFERRED meimaonal dam field by spreading the one-dimensional
EMBODIMENTS data field everywhere parallel to itself into two-dimen-

10 ions. the information is spread in a region determined
Firs. a mathematical analysis of radar iaing is by the available apriori knowledge. This apnon knowi-

presented and analogized to a related analysis concern- edge indicates a probability that the information is more
ing a tomo-aphic imaging system. These two techno- Riely to be known in one region than it is in another
logical discussions are set forth to provide a thorgh region and therefore it is not necessary to spread theappreciation of the salient features of a specific embodi- Is information uniformly over lines in the two-dimemsional
ment of this inventive concept. It is of course under- plane by buck projection. This operation is referred to
stood hat the aalogie of these system and a come- with respect to positron emission tomoifaphy as "coufi-
quent improvement by the inclusion of this inventive de uewigh but may e intmpreted as being a

concept are also applicable to imaging synthetic aper- we ihting bu ye in t errd ing a

tare radiar. inverse synthietic aperturie rada rasmtrc weighting of the information according to whatever
sysem snar insrsem othe•ar devcesih 'ic r form of apriori knowledge that is available that indi-systems, sonar syatema or other devices in which there.

s an Interaction between the measuremen that are cas that the information is more likely to be encoun-

being taken of the physical phnomenon and the phe- tered in one portion of the plane than uniformly along

nomenon which are being observed. More specifically lines (back projection) in the plane.

this improvement can be incorporated in systems which 25 Radar imaging has been typified and characterized by
enable the taking of a series of measurements not iden- a number of parameters. These are discussed at length
cally repeating the same measurements but paranster- by H. L Van Trees in his text "Detection. Estimation.
ized by a variable which is generally desigmated as an and Modusion Theory. VoL 3, John Wiley and Sons.
angle 0. This need not necessarily be a physical angle in New York, 1971. The parameter p(r ) is the target
the cue of an inverse synthetic apertre radar but could 30 scattering-function which is the average reflectivity as a
be the angle made by the ambiguity function of the function of delayr and doppler f, see pp. 448 of the Van
chirp waveform relative to the delay axis on each suc. Trees text. The parameter a(rf) denotes the ambiguity
cessive transmission and is the chirp rate of the actual function of the transmitted radar-signal, (page 279 of
signal tramitted. In the case of a radiometer it is the Van Trees). In the absence of noise, the output p(iPf) of
real angle in which the radiometer observes the scene of 3s a radar receiver consisting of a bandpass matched-filter
which it is trying to form an image. (BPMF) matched to the transmitted radar signal) fol-

In other words, this concept applies to a system in lowed by a square-law envelope-detector (SLED) is the
which there exists a free parameter called an angle 0 convolution of the target scattered function and the
and that a series of measurements is made, each one of ambiguity function of the transmitted signal. Through-
these measurements at a different angle of 1 .... 9,. It 40 out this inventive concept, ambiguity function. aftif)
is recognized that each measurement may itself be a refers to the magnitude squared ambiguity function as
series of submeasurements in which the angle is held elucidated in somewhat different notation in the Van
constant so as to improve the quality of the measure- Trees text. These expressions are set forth on pages 462
meat at that angle. What is being descibed is the combi- and 463 of the Van Trees text and form the basis for.

7 nation of these multiple measurements and a reconstruc- 45
tion algorithm which has the capability of providing fp(r', ar- ef-Pdr'di. (1)
high resolution and simultaneously the incorporation of
apriori knowledge. For example, in conventional X-ray For the delay-doppler radar-imaging problem with-
tomography an attenuation projection can be measured out noise, a sequence of target illuminations by chirp-
that is an integral of some physical property, a scatter- so FM signals is considered. Each of the chirp-FM signals
ng cross-section is measured in the case of an inverse has a different chirp rate. The effect of changing the

synthetic aperture radar and a voluminous flux projec- chirp rate of a signal on its ambiguity function is to
tion is measured in the case of a radiometer. A set of rotate the ambiguity function to an angle 0 in the delay-
integrals is available for these functions. The fundamen, doppler plane. (page 291 of Van Trees). This depen-
cal theorem forming the subject matter of this improve- 55 dency is indicated in equation (1) by changing the nota-
meat is the radon inversion lemma which says that a tion:
Fourier transform of this observation of the one-
dimensional projection is represented as a slice through .,,).f 1pt.r' -rJ- .af i.,(' (2)
the two-dimensional Fourier transform of the distribu-
tion that is trying to be measured. This, howev. stand. 60 where 0 is determined by the chirp rate relative to the
ing by itself is equivalent to having no additional infor, radar pulse without chirp-FM and n(r.f) is an undesired.
mation available and. therefore, the evaluation of the naturally occurring contaminating noise function which
inverse radon transform tends to be numerically unsta- is to be minimized according to well established tech-
ble and is equivalent to doing numerical differentiation. niques. The noise-free radar-imaging problem arises in

However, addition apriori information often is avail- 65 the observation of the output of the BPMF-SLED re-
able. For example we know the range resolution in the ceiver, po(rf) for a sequence of target illuminations
case of an inverse synthetic aperture radar, or when having different chirp-FM rates. G-,r,. 0i.... 9, and toI cross-bearing fixes are provided in the cue of a radiom- determine the scattering function p(r,f).
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To elaboram in the case of the chirp waveform, the Ter-Poossian entitled "A Mathematical Model for
angle is not the real angle a it would be in the cam of Positron Emission Tomography Systems Having Time.
trying to do a triangulation with a radiometer or doing of-Flight Measurements" IEEE Trwnzuons on .Vucler
the actual physical measurmuent in the positron eins- Scim. VOL. V-23. pp. 3575-3513. June 1901. see the
sion tomograph. The chirp waveforn angle is a valid 3 appendim.
parameter, however. It has been known in the art since The noise-free imagmi problem of emission tomogra-
the fundamental paper by Iluoder in the Bell System phy is to observe the line-of-flight and the time-of-flight
Technical Journal in 1960 in that the response of a radar of the sequence of detected annihilation photons. mod-
to chirpwaveformisparmeterzedby achirp rate eled on the averageby p(r.f) in equation (2) and to
number. This chirp rate number, the rate at which the 10 determine the two-dimensional activity distribution
frequency is changing. parametetie the ambiguity p(',f.- Here, the pamter as(r.f) is a known function
function, that is, its ability to localize as a function of determined by instrumentation errors and pe(r.) is the
delay and doppler, which is inclined in the delay dop- number of detected events having a line-of-flight with
pier plame at a physical angle proportional to the chirp angle 0 and differential time-of-flight corresponding to
rate, which is the mathematical parameter that de- 1S position (r,) along the line-of-flight. In A recent experi-
scribes how fast the chirp changes. Stated in another meat the dam has been quantized to ninety-six angles
way, if the chirp does not change at all, the angle is 0 (0-1801/94, i-0. 1, ... 95) and to 128-by-128 posi-
and then one has the ability to localize precisely in dons collected in an intrument being developed at
doppler because there is an equivalency to a continuous Washington University and discussed by 1. Blane. D.
sample of a siusoid and there is almost no ability to 20 Fiche, R. Hitchens, and T. Holmes in their article "Data
resolve = a function of delay. As the chirp rate is ian- Acquisition Aspects of Super-PETT." IEEE Tansc-
c r aned, nge and doppler am coupled together so that dms an Nucear Science VoL NS-29, pp. 544-47, Febru-
a two-dimensional surface is defined which relates the ary 1982, see the Appendix.
ability of the waveform to resolve the target. By anal- The error density ae(rf) is determined by both the
ogy to the usage for optical iating systems, the term 25 physical size of the crystals used in the scintillation
'point spread fin" cn be used to desribe this detectors (resulting in about a 1-centimeter uncertainty

qmtity since the ability of the radar to resolve a single transverse of the line-of-flight) and tne timing resolution
point target is being described and is ambiguous in the of the electronic circuitry used to measure the differen-
sense that some of the targets at a near range will be tial propogation-time (resulting in about a 7-centimeter
reeived by the radar precisely the same -way for their 30 spatial uncertainty along the line-of-flight). For present
doppler as the targets at a lager range will be received systems, this density is reasonably modeled by a two-ad-
with their doppler. That is, the target point gives rise to mensioal, elliptically assymetric Gaussian-function
a response surface with a contour which is an ellipse having its major axis oriented with the line-of-flight and
whom major axis is along the line in range delay dop- its minor axis oriented transversely to this.
pier space parameterized by the angle 0. 35 For the radar-imaging problem this density corre-

Recent developments in poitron-emission tomo- sponds to the ambiguity function of a radar pulse having
graphic imaging systems have a relation analogous to an envelope that is a Gaussian function and an instana.
equation (2). In these tomographic systems a positron- neous frequency that is a linear function of time and the
emitting radionuclide is introduced inside a patient, and phase which is a quadratic function- of time.
the resulting activity is observed externally with an 40 From the foregoing for an improved delay-doppler
array of scintillation detectors surrounding the patient radar-imaging system certain assumptions must be
in a planar-ring geometry. When a positron is produced made, the first of which is that the target is illuminated
in a radioactive decay, it annihilates with an electron by a sequence of radar pulses each having a distinct
producing two high energy photons that propagate in FM-chirp rate corresponding to angles O-Oo 01. .....
opposite directions along a line. In the first system em- 43 9$ spanning the range from 0"-180". A BPMF-SLED
pIoymg Positron emission, the line-of-flight of the two receiver produces data peo(,f) for 8o,. - .... 0,S and
oppositely propagating photons is sensed for each de- quantized values of(,rf). The problem that remains is to
tected event. The data attributed to thes events are estimate the target scattering function p(r.f) using the
organized according to their propagation angle and relationship stated in equation (2). For emission-tomog-
processed with the same algorithms used in X-ray to- s0 raphy imaging when both time-of-flight and line-of-
mography. The result is an estimate of the two-dimen- flight information are available, event data is provided
siona spatial distribution of the radionuclide within the which is representative of pe(ir,f) at angles O-Go. G1, .
patient in the plane of the detector ring. Recent devel- ., 9, spanning 0-180 and quantized to values of (r.f).
opments attributed to improvements in high-speed elec- The mesurement-error density ae(rf) is known. The

jtics and detector technology have made it feasible to 53 activity distribution p(r,f) is to be estimated using the
measure the useful accuracy not only of the line-of- relatinship in equation (2). In both cases, the delay-dop-
flight of annihilated photons but also their differential pier radar-imaging and the emission-tomography imag-
time-of-flight. As a consequence, in the absence of ing the activity distribution p(r,f) need be estimated

Soi the measurements are in the form of information using the relationship expressed in equation (2).
of equation (2) with p(rf) being a two-dimensional 60 A number of preliminary considerations must be ex-
activity distribution to be imaged aid with ae(,4) being aminned and defined to allow a more thorough compre-
the error density associated with measuring the location hension of the improvement of this inventive concept.
of an annihilation event. In this regard p(rf), ae(rd), Part of the solution for improving the radar, tomogra-
and po(v.f) correspond to Mx). p4(x/@), and i(n,9), phy, sonar, or radiometer image lies in developing an
resectively, where x and s are two-dimensional vec. 65 appropriate algorithm for suitable processing of an out-

togs. These parameters and their applicability to posi- put signal from a known BPMF-SLED receiver. The
tron emission tomography systems are explained in the algorithm is derived by applying statistical-estimationI article by D. L Snyder, L. J. Thomas, Jr., and M. M. theory to a mathematical model that accounts for the
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nonse and other effects seen in an emission-tomography proach to idealize lie-ustegral tomography. Examples
system having time-of-flight measurements. The also- of weighting f1unctions that might be adapted are.,
nithai for solving equation (2) above was proposed by
D. L Snyder et al in their article referenced above. This uiMI844'Al- 1Is,4vbI14ij
algond',m was evaluated in a late writing by Snyder 5
-Some Nonse Comparisons of Data-Collecto Arrays .Whbe.
for Emiss Tomogrsphy-ystems Having Titm-of. 1,4',A'- 1. v- r S&P/. P' 26fl2 .0. cxhemms,. 14jh
Flight Measurements" 1EW Tmmasiaw an N~ucla
Scums. V04 sVS-29, No. I, pp. 102%-4033. February Here wo(vr.f) is unity for delays and dopplers in a small
1982 and by Politte and Snyder in the article 'A Simula- 10 bin located at r and f in the delay-doppler plane and is
dion Study of Desig Cboices in the [mplementation of Zer othervWe independently of the sweep rate 0. In
TmeofFlight Reoruction Aloihs-Poed this case. fo(i-,f) equals peQ-4f). and the preimaige is

ton University, May 19a2 published by the IEEE Com- I (4C I

night be expecWe because of the quantum nature of guty futio ei4 scnetae abot the orgin
onidcitvit deay, an effesct well modele by a Poi- . (?.0-(0.A wich reure signal with a large time.son process with intensity p(i4) proportional to the 20bnwdhproducL Then. pe(i-4qul) ~ rf.an hcocnrton of the radioactive source. It is argued in pndmag is obtained simply by post detection integra-the earlier referenced D. L Snyder at al article that the tioe in each delay-doppler bin without further process.

mieasured data (that is, line- and rim-of-flight of annii-ii in&~latit Photons) are als Poisson distributed, with the Give wo(.f) a value of unity for values of delay and
intnsty eig p(i4) n quaio (2. aziumlikii ~doppler within a narrow strip of width 8 passinghood estimation is then used to estimate p(r4) An ex. through the orligi of the delay-doppler plane at angle 9tension of this algorithm developmtent is discussed in a and we(?4) a value of zero otherwise Then fe(i-.t) is abaur article by 0. L Snyder et &I entitled "Imag Re, strip integral, or line integral for 8 small, through thecosrcinfrom Lost-Mode Da to ana Emission To. datm poQ'J)i which corresponds to unfiltered back-pro-

mography System Having Timne-of-Flight Measure 30 jection in tomography.
menus" LEES Transiactions on NuciwrScienc. VOL NS. A Confidence weighting function *e(vJ.umae(r/) isA0 No. 3, pp. 1543-1849, Jum 1913. see Appendix. The used to form the preimage as suggese from te posi
extende algorithm development is said to enable far trOn-emision tomography experience. This corre-
more accurate reconstructions at the expense of greatly sponds to takting the value of the DPMF-SLED signal
increaed computation. 33p.(1-4) shown in the drawings as coming from measure-

Neglecting the ects Of noise and mstaitcal fluctua- meait memnories 1S at each value of delay and dopplertions in the measurement data enable the expression of pej(vrf) . pom(r4f) and distributing the values over thepo~tj) a the measurement described above. The =.- delay doppler plane according to the ambiguity runc-
proved imaging system IQ for enhac- radar imagingC 40on aer*). This approach as the one now used routinely
radiomete imaging, sonar imaging, and the like adapts in emisson-tomnography system having time-of-flight
Itself to the etabhe state-of-eart anfid improves date If the mathematical development of the cited Say-
thereon, sea FIG. L The output pg(rft) of a BPMF. der et al paper on mathematical modeling carries over
SLED receiver. schismaticaly represented IN memory the radar-iaging problem, the choice of the weighting15. is ienioabecsameit is a ffnction of the function ismotivated by noting that the resulting f#(r4)
three idependent variables 9, r, and f. The target image3 is the maximum-liktelihood estimate of the delay-dop-
Sought- pAvJ) however, is two-dimensional. Thus, a pler reflectance in the target that led to the messure-
threednmenmol to two-dimensiona transormastion of meat pe(i-J) assuming apriori that p(rf) is uniform.p.(v,1) is required Ws Part of the improved processing. The seond processing step in the imaging approach

The improved processng is accomplished in two relies on the sumiming of the preimage outputs in a
steps. The farst sep is to form a two-dimensional " summer 25 and the deriving of a target image from the
"presmagil array"7 2L. This is accomplished by convolv. preimage in a convolver 30. Such a target image resolu-ing the data po(r.) obtained a each FM-chirp rate a tion is provided within a resolution function h(a-,f).with a weighting function w.(-d) and then summing the which defines a "desired image" according toj eults over 0 that is we form the functions 3(d

55 ~ 'A-ffM~.-vI-Pp-vJ'wpWj (43)

It has been found that including such a resolutionfrom which a two-dimensional preimg f(1'.O is de- fimnction is important in processing emission-tornogra-
rived according to PhY data asa way to trade off resolution and smoothing

60 for noise suppression. A narrow two-dimensional, cir-
cularly symmetric Gaussian resolution-jilter is used as

(4) convolver 30. Let i(rf) denote the estimate of d(i-.f).1Ij AM ~ r X / Mv 0e qbtained by processing the preimage lfi-,f). Also let0 D(uv) and F(uv) denote the two-dimensional Fourier
The formation of this priaecrepnst oe63 transforms of d(r~f) and Rri-. respectively. Thus:

extent with the back-projection ste of the "unfiltered b -J~~W&rn QL V1.

back-projectaii. Post two-dimensional raltering" ap-
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where H(uv) (see FIG. 2) is the transform of h(vr.f) OW-ndine
G(u.v) is th~e cranstOrn of Ilie function g(rj) defined
according to Posts 106-Ill. is"4

ROMt Tuna Sigint PtOCOMSi VII. V(A. 401.
Socuiy 0( Pbaaopac Imutueseiaauo Ensineers

SS IL -0M Acquah Astects of S.u-PE-TT-.

Q tUE Tram a. 4acew scance.
VOL n449 pen 544-S.L7. February 1"52

FIG. 2 is illustrative for the 2D Gaussian approxima. III. "A Sktahemenal .140'u far Powrom

tics for the 2D ellipsoidal contour of the ambiguity 1o rEissio Tonscerei nSsmHvn

function of the linar FM waveform. This required by 0. L Snyder a aL
filteir function is provided for a general 2D contour in IEEE Tramon Neaur Scusme

weitncem wijth established ehnqs.VOL 1455., pages 3M-53383. lime 1961
The imp d(v.f) is obtained from Duv) by a two-di. V os mo com~s r Dle.

maioaL inverse Fourier transformation The fuamc- 15 Tamapmpby.Syu Htaving
non. g(vJ) and G(uv) are precomputable since they Tae-dal.PUh Mmnuas.
deped only on the ambiguity fkmnction and the byID L SnyaderNcl
weighing function used to form' the premage and amt VOL Tra26 m 9103 Mutingr 1952p
on the measured data. V. Inkge Raerucsa. frt Ltat.Made

For the choice of the weighting function: Des is s Emmsa. Tatoetapty
Syent tHven Time-of.Flight .%tmuremau
by 0. L Snyder a &L
ZU Tram. as N4uckear Science.

the function &A~f is the avera er 0 of th squm of VOLa 14 20. ne~ 19.
the ambiguity ftiont ag"t) is a two-dimensional 25 VL -CHIRP Voppler Rader-.
asyinmetric Gaussian functm ioad 5(14) is a Dessel by Nel SaBed.

ftmuncin The dervaio does not reqpure that *e1-4) be Prc IR

Gussian. but g(v.I will usually need to be evaluated VL 7Z NIL 4.~ atil405,~ fAr1 1

numerically for practical ambiguity functions. Microwave Imagg.
The processing thusly described tends itself to the 30 by D. L aMeni at aL

rAar-W34agingj enhancement and is motivated by the Ismc tEEN. Vol. 71.14o. .

processing derived from a mathematical model for the Vegas 9i3U24-261. February 1963

ontmograpity imaging problem m'i endi result V111 S 'F-I requency Radar Target tmsens-.

Is an improved imagig for radar doppler. radiornetric (p-iv e. affa9Oice)
sonar and the likte infatuation gathering systems. OL - of [aeoa

The arhcture suggested by the algorithm defne 3 Symeea Aperture Radar i ISAR) Imageng'.
by equatio (3) throutgh (6) above is similar to that dis- by &L J. Prcet c

IEEE EASCOM Record.
cussed in a lawe article by D. L Snyder entitled -Also.. Pe. 340-.343. Septeber 1980
rnth= Ad Architectures for Statstical Imag ProceS-
ing in Emission Tomography"'Real Thai. Signal Procss 40 Wa sclie s
ing VII. VOL 495, Society, o(Pbato.Optical Inisau16ii& WhAnaaat u is fornw ip igth agtprvddb

n~n ngieer. p. 19-11, 184 ee he ppedii a series of discrete target image data signals parameter-
Data acquired for each doppWe rate can be Processed in iset by a variable such as an angle 9 comprising:
pWaae and then combined to form I(vrl) according to meam for providing a plurality of target image data
equation (4) and the processing in equation (3) required 45 input signals p(v) each for one of the series of
for each doppler rate can be ptpelined. The processing discrete target image data signals.
implensented in curren emimn-toeoraphs ispr means coupled to a separate input providing means
formaed in the sVaia rather than the Fourier domain. for processing the target image data input signals in
The algorithm has been implemented by a computer, totad to generate separate two-dimensional preim.
for esample. a Perkn-Ele 3242 computer with a s "fntosfT0
floating point processoir but no array processor. Two mew fSCor I sumn h w-imninlpem
convoluition. and a divisin are requird at each suptnigth w-iesinlpemg

fora ea bfte datafortedi angls OpiWfrec rge means coupled to summing means for convolving the
ceasng an e Prfored nd ipeinedforeac anle. summed preimage functions with a response func-

Obviously many modifications and variation. of the 33 tion to form an improved target image signal ac.I ~ ~~present invention are possible in the light of the above t ,.euto
teachings such as substituting magnitude in place at cordingtohequin
magnitude squared. It is therefore to be understood that ai) ~-'~~~/dd
within the scope of the appended claim the invention
may be practiced otherwise than as specifically de- 60 tht has equivalence as
scribed.

APPENDIX DINPawGe.JList of Patents, Publications & Information in Fourier transform notation where 14(uv) is the
65 Fourier transform of h(r,f)l; and

1. -Al~oram and Arhe jo Sgiga m means coupled to the convolving means (or control.
Pracesu.eg e4*110ma. so TOAuapupty- ling the display of an enhanced image in response

by 0. L Snyder to the improved target image signal.
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2. A appmusaccording to clam I in which each of

* the targot image data input signal providing meas as where Ord) i nundesired naturally occurrng
fabricated to provide a separat one of the target image noise function over G angEGe. .;~
data input sigials from a separate one of the series of procesing i total the plurality of series of discrete

* discrete target imag data sigals to be characterized by 5 target image data input signals to generate two-di-
the runction: ..endonal preimage functions 1(rAf

summing the plurality of two-dimensional prenmage
,s'v- Ifv.'ast-tIf~(~~d?4$.fimictioea; convolving the summed plurality of

two-dimenional, preimage functions into an in-
over G angle-S... soG. 10 prove target image signal corresponding to the

I. An apperatus according to claim 2 in which each of funaction
processig manms ts fabricatted to convolve the data f
po,(vJ)... p..(vJ) wish a confidence weighing function 44
we(vJ) to forms the functioa and

fe(srfl- r fj.Ps4,Jwe -?'f)fdf. controlling the display of the improved targetimg
sipl to provide an improved target image on a

and the summing means, sus over the angle G to obtain viewing screen.
the summed two..ensio--l preinage function of:. & A method according to clatimS in which the step of

20 processing coavolves each discrete target inageo data
Ir imptit signals po(trf) with a weighting function we(r,f) to

A.,) f fo(v/a be epressedas

which optionally is expressed as the approximate ex- 2
pressionto each obtain the two-dimensional preimage function

Of:

4. An apparatus according to claim 3 in which the
convolving means is a two-dimensional. circuilarly symn-30 AJ /
metrical Gaussian reolution-filter whose impulse rM 30a
spouse is the solution computed by a two-dimensional.
inverse Fourier transformation expressed as for angle 9mGSo... .9 which optionally is expressed as

the approximate expression:

O)- (I/y) fa(Jw(Jd35 AV)M
0 7. A method according to claim 6 in which the step of

convolving wish a circularly symmetric response func-
that has equivalence a a two-dimemsonal. circularly dion relie on a two-dimensional circularly symmetrical
symmsetrical Gaussian resolution-fil1ter which satisfies Gaussian resolution-ilter computed by a two-dimen-
the equation: 40 sional inverse Fourier transormation expressed as:

v)-Mu~~p~i~u.')#~QaAM - (11w) /a~dw~~
where 00u6v) is the Fourier transform of g&Af) 0

&. A method of improving a target image from a 4s
series of discrete target imag data signals parameter- that has an equivalence a a two-dimensional, circularly
ized by a variable suich as an angle 9 comrisng symmetrical Gaussian resolution-filter which satisfies

providing a plurality of discrete target iage data the equation:
input signals; each for one of the series of discrete bI -MLv&rGr
trare image data signals and each target image so )Mi)avGu)
das input sinls ucraied =where G(uv) is the Fourier transform of &~J).

pMvJ) I p~trj7qrv- rV-f~dI,~4 + a S S

60
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